

Volume 12, Number 4—April 2008 Lebeau, Using Class Methods as API Callbacks

ISSN 1093-2097 8 C++Builder Developer’s Journal

everal past C++Builder Developer’s Journal arti-

cles have touched on the general topics of what

function pointers and closures are, how to im-

plement events in classes, and how to use API call-

backs in general [1]-[3].

Although those articles are good by themselves,

they describe each of their topics separately and indi-

vidually, but do not describe what to do in situations

where they need to cross paths with each other. One

question in particular that I have come across again

and again over the years, in many different discussion

forums, merges all three topics together very simply:

 “How do I use a non-static method of a class as a call-

back for an API that expects a non-class function pointer

instead?”

That is a very good question, and one that does not

always have an elegant answer, depending on the

particular API being used.

 In this three-part series, I will attempt to cover

several different ways that this question can be an-

swered, leading up to an introduction of something

new I have developed to enhance a technique Borland

has already pioneered in its VCL framework.

Accessing object members
In an object-oriented environment, such as C++, most

developers want to write their API callbacks so that

they can access data members and/or methods of one

or more objects being using with the API. How that

can be done, however, depends on the particular de-

sign of the API.

Using a user-defined parameter

A well-designed API should provide an option of

passing a user-defined value, usually a void* pointer

or a pointer-sized integer, as part of the callback. In

that situation, the target object’s this pointer can be

passed as the value so the callback can access the ob-

ject without any special tricks needed. Refer to Listing

A for an example. This is the most desirable approach.

It is clean, straightforward, and flexible. It can easily

adapt on a per-call basis.

 The VCL uses this approach internally when pos-

sible, as many Win32 API functions have LPARAM or

LPVOID parameters that can be used. The TThread

class, for instance, passes its this pointer as the

lpParameter value of the CreateThread() function,

allowing a private callback function to call TThread’s

Execute() and DoTerminate() methods, similar to

the example in Listing A.

Using a global pointer

Unfortunately, not all APIs provide such an option. So

what can be done then? For most people, using a

S

Using Class
Methods as API
Callbacks, Part I
By Remy Lebeau

Versions: C++Builder 2007, 2006, V6, V5, V4, V3, V1

Listing A:Listing A:Listing A:Listing A: User-defined parameter

typedef voidtypedef voidtypedef voidtypedef void (*CallbackType)(voidvoidvoidvoid*, intintintint);
voidvoidvoidvoid SomeAPIFunction(CallbackType, voidvoidvoidvoid*);

voidvoidvoidvoid MyCallback(voidvoidvoidvoid *UserData, intintintint Value)
{
 TMyClass *myObject =
 (TMyClass*) UserData;
 myObject->DoSomethingWith(Value);
}

voidvoidvoidvoid TMyClass::SomeMethod()
{
 SomeAPIFunction(&MyCallback, thisthisthisthis);
}

Lebeau, Using Class Methods as API Callbacks Volume 12, Number 4—April 2008

C++Builder Developer’s Journal 9 www.bcbjournal.com

global pointer to the target object is usually the only

way they know how to go. For example:

typedef voidtypedef voidtypedef voidtypedef void (*CallbackType)(intintintint);
voidvoidvoidvoid SomeAPIFunction(CallbackType);

TMyClass *g_myObject;

voidvoidvoidvoid MyCallback(intintintint Value)
{
 g_myObject->DoSomethingWith(Value);
}

voidvoidvoidvoid TMyClass::SomeMethod()
{
 g_myObject = thisthisthisthis;
 SomeAPIFunction(&MyCallback);
}

Although this approach does work, one major

limitation is that the callback can only operate on one

object instance at a time, usually within the context of

one thread at a time (if you want to use multiple

threads, you may have to use TLS [thread local stor-

age] to hold multiple global variables). You are re-

sponsible for making sure the global pointer remains

valid while the callback is busy.

For projects with simple API usages, this is not so

bad an approach (even though many developers tend

to frown on the use of global variables if it can be

avoided). However, this approach tends to fail mis-

erably in more complex projects that use multiple ob-

jects and/or multiple threads with the same API. The

more things that are involved, the messier the coding

can become. I have hit this roadblock myself in more

than one project.

Using a proxy

Recently, I started some work on a project that uses a

particular third-party API (which I will not name) that

I want to implement four different callbacks for. They

access the same object instance, but at different times

for different purposes. Due to time constraints, I used

a global pointer, but it got me thinking about whether

any alternative approach exists that I could use to ac-

complish the same results I want in a different man-

ner later on when I have more time to fine-tune it. In

fact, there is one option I want to discuss in more de-

tail for the rest of this article series.

I spend a lot of time studying and browsing the

VCL source code during the course of my daily activi-

ties. A little-known jewel that immediately came to

mind is the VCL’s MakeObjectInstance() and its

associates:

typedef void __fastcall typedef void __fastcall typedef void __fastcall typedef void __fastcall
 (__closure *TWndMethod)(TMessage&);

voidvoidvoidvoid* __fastcal__fastcal__fastcal__fastcall l l l MakeObjectInstance(
 TWndMethod Method);

void __fastcall void __fastcall void __fastcall void __fastcall FreeObjectInstance(
 voidvoidvoidvoid* ObjectInstance);

In a nutshell, MakeObjectInstance() dynamically

allocates a special proxy that allows a non-static class

method with a signature matching TWndMethod to be

used as a Win32 API WNDPROC window procedure

callback with the following signature:

typedeftypedeftypedeftypedef LRESULT WINAPI
 (*WNDPROC)(HWND, UINT, WPARAM, LPARAM);

 The proxy can be passed to the Win32 API Cre-

ateWindow/Ex() and SetWindowLong() functions to

assign it as the window procedure for any HWND.

When the OS then sends window messages to the

HWND, the OS thinks it is calling a standalone non-class

function, but the proxy stub is translating the calls

into suitable invocations of the target class method –

complete with passing the correct object instance as

the necessary this pointer. As far as the OS is con-

cerned, it does not have a clue about any object

method being called, and the class method thinks it is

being called normally like any normal call.

Every VCL control that is based on the

TWinControl class uses MakeObjectInstance() in-

ternally to receive its window messages from the OS.

So does any class that creates private HWNDs using the

VCL’s AllocateHWnd() function (TTimer, for in-

stance).

However, there are two downsides to MakeOb-

jectInstance(). First, it is not thread-safe. It makes

use of global resources that are not protected from

concurrent access by multiple threads. As such, it can

only be used safely in the context of the main thread.

Second, it only works for WNDPROC callbacks specifi-

cally and no others.

WNDPROC’s alternative to proxies

WNDPROC callbacks have an HWND parameter available,

so there is an alternative approach that can be used

without using a proxy. The object’s this pointer can

Volume 12, Number 4—April 2008 Lebeau, Using Class Methods as API Callbacks

ISSN 1093-2097 10 C++Builder Developer’s Journal

be stored in the HWND directly, using either the Set-

Prop() or SetWindowLong() function. TWinControl,

for instance, uses SetProp() to store its this pointer

into any HWNDs that it creates. When the window pro-

cedure is invoked, GetProp() is used to retrieve the

object’s this pointer so its members can be accessed.

For example:

LRESULT WINAPI MyWndProc(HWND hWnd,
 UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 TMyClass *myObject = (TMyClass*)
 ::GetProp(hWnd, TEXT("MyObjectProp"));
 returnreturnreturnreturn myObject->HandleMsg(
 uMsg, wParam, lParam);
}

TMyClass::TMyClass()
{
 m_hWnd = ::CreateWindowEx(…);
 ::SetProp(m_hWnd, TEXT("MyObjectProp"),
 (HANDLE) thisthisthisthis);
 m_DefProc = (WNDPROC)::SetWindowLong(
 m_hWnd, GWL_WNDPROC, (LONGLONGLONGLONG)&MyWndProc);
}

This approach is similar to the example in Listing A,

just with an extra level of indirection, as the callback is

receiving a container (the HWND) that contains the ac-

tual object pointer.

Conclusions
The callbacks I want to implement in my project are

not WNDPROC callbacks. In fact, the API I am using

represents a worst-case scenario. Each callback has a

completely different signature from the others, requir-

ing me to write a different wrapper function for each

class method that I want to call. I cannot use a com-

mon wrapper for all of them (well, not easily anyway,

which I will discuss in Part 3 of this article). But more

than that, none of the callbacks provide any kind of

user-defined values, so all of the wrapper functions

have to share a common global object pointer.

So how can MakeObjectInstance() help me in

this situation? Well, by itself, it actually does not help

me at all. To explain what I have come up with, you

have to first understand how the proxy generated by

MakeObjectInstance() actually does its work. I will

explain that in Part II of this article. In Part III, I will

then show how I have taken that knowledge to de-

velop a new general-purpose proxy system that can

be used in all kinds of different situations.

Before moving on, let me warn you that from this

point on, a basic understanding of 32-bit x86 Assem-

bly code is needed (I am not going to cover 64-bit at

this time). Specifically, you should be familiar with

the use of CPU registers and the stack. Make sure you

read up on those topics if you need to. If you know

how Borland compilers use x86 Assembly for class

method calls, that would also be helpful, though I will

give a brief overview of that as well.

Contact Remy at remy@lebeausoftware.org.

References
1. K. Reisdorph, “Using callbacks in DLLs,”

C++Builder Dev. Journal, 3 (2), 1999.

http://www.bcbjournal.com/articles/vol3/9902

/Using_callbacks_in_DLLs.htm

2. B. Knigge, “Understanding function pointers,”

C++Builder Dev. Journal, 4 (7), 2000.

http://www.bcbjournal.com/articles/vol4/0007

/Understanding_function_pointers.htm

3. D. Bridges, “Events and callback functions,”

C++Builder Dev. Journal, 5 (10), 2001.

http://www.bcbjournal.com/articles/vol4/0007

/Understanding_function_pointers.htm

Share your thoughtsShare your thoughtsShare your thoughtsShare your thoughts with our

authors and other readers by

using the Journal‘s forums:

http://forums.bcbjournal.com

